RUS  ENG
Полная версия
ЖУРНАЛЫ // Успехи математических наук // Архив

УМН, 2019, том 74, выпуск 2(446), страницы 81–148 (Mi rm9877)

Эта публикация цитируется в 3 статьях

Вещественно-нормированные дифференциалы: пределы на стабильных кривых

С. Грушевскийa, И. М. Кричеверbcdef, Х. Нортонgh

a Stony Brook University, Stony Brook, NY, USA
b Columbia University, New York, USA
c Сколковский институт науки и технологий
d Национальный исследовательский университет "Высшая школа экономики"
e Институт проблем передачи информации им. А. А. Харкевича Российской академии наук
f Институт теоретической физики им. Л. Д. Ландау Российской академии наук
g Concordia University, Montreal, QC, Canada
h Centre de Recherches Mathématiques (CRM), Université de Montréal, Montreal, QC, Canada

Аннотация: В работе исследуется поведение вещественно-нормированных (ВН) мероморфных дифференциалов на римановых поверхностях при вырождении этих поверхностей. Мы описываем все возможные пределы ВН-дифференциалов на стабильной кривой, в частности, доказываем, что вычеты в нодальных точках даются решением соответствующей задачи Кирхгофа на двойственном графе кривой. Мы также доказываем, что пределы нулей ВН-дифференциалов образуют дивизор нулей подкрученного дифференциала, представляющего собой явно описанный набор ВН-дифференциалов на неприводимых компонентах стабильной кривой с полюсами порядка выше первого в некоторых нодальных точках.
Основным техническим средством, используемым в работе, является новый метод построения дифференциалов на гладких римановых поверхностях (применяемый здесь для ВН-дифференциалов, но имеющий бо́льшую общность) в окрестности фиксированной стабильной кривой в координатах вклейки (plumbing coordinates). При этом гладкая риманова поверхность рассматривается как дополнение к окрестности нодальных точек на стабильной кривой, граничные окружности которых попарно отождествлены. Задача построения дифференциала на гладкой римановой поверхности с предписанными особенностями сводится к построению дифференциалов с заданными “скачкáми” на линиях склейки (швах). Этот аддитивный аналог задачи Римана–Гильберта решается новым методом, в котором вместо ядра Коши на гладкой римановой поверхности, полученной вклейкой, итеративно используются интегралы с ядрами Коши на неприводимых компонентах стабильной кривой. Поскольку стабильная кривая фиксирована, для построенного дифференциала можно получить явные оценки, что позволяет провести точный анализ вырождения.
Библиография: 22 названия.

Ключевые слова: римановы поверхности, абелевы дифференциалы, краевая задача, вырождения.

УДК: 517.948+514.7

MSC: Primary 14H10, 14H15, 30F30; Secondary 32G15

Поступила в редакцию: 12.12.2018

DOI: 10.4213/rm9877


 Англоязычная версия: Russian Mathematical Surveys, 2019, 74:2, 265–324

Реферативные базы данных:


© МИАН, 2024