Дифференциальные уравнения, динамические системы и оптимальное управление
Глобальные оценки и разрешимость регуляризованной задачи о трехмерном нестационарном движении вязкой сжимаемой теплопроводной многокомпонентной жидкости
Аннотация:
We consider the initial-boundary value problem which describes unsteady motions of a viscous compressible heat-conducting multifluid in a bounded three-dimensional domain. Viscosity matrices which characterize viscous friction inside and between the multifluid constituents are supposed to have a general form (except the requirement of positive definiteness). The regularized boundary value problem is formulated and its global solvability is proved.
Ключевые слова:global existence theorem, unsteady boundary value problem, three-dimensional flow, viscous compressible fluid, homogeneous mixture with multiple velocities and one temperature, heat-conductive fluid.