Дифференциальные уравнения, динамические системы и оптимальное управление
Факторизация оператора Грина в задаче Дирихле для $(-1)^m(d/d t)^{2m}$
С. Г. Казанцев Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russia
Аннотация:
In this article we propose
a method for solving the
Dirichlet boundary value
problem
$(-1)^{m}{u}^{(2m)}=f$,
${u}^{(k)}(\pm 1)= 0$,
$k=0, \dots ,m-1$,
which is based on the factorization of the Green's operator,
$\mathbf{G}_{2m}=(-1)^m\mathbf{J}^m \, \overset{\infty}{\underset{m}{\mathbf{Proj}}}\,
\mathbf{J}^m:L_2({\mathbb I}) \to
H^{m}_{0}({\mathbb I})
\cap H^{2m}({\mathbb I}), {\mathbb I}=[-1,1]$.
Here
$\mathbf{J}^m$ is a Volterra operator of
$m$-fold integration
аnd
$\overset{\infty}{\underset{m}{\mathbf{Proj}}}$ —
operator of orthogonal projection
in
$L_2({\mathbb I})$.
The polynomials
$\widetilde{\mathbb P}^{[2m]}_{2m+N}
=\mathbf{J}^{m}\overset{\infty}{\underset{m}
{\mathbf{Proj}}}\, {\mathbb P}^{[m]}_{m+N}$
form the basis of the Sobolev space
$H^{m}_{0}({\mathbb I}) \cap H^{2m}({\mathbb I})$,
where
${\mathbb P}^{[m]}_{m+N}(t)=
\mathbf{J}^{m}P_N(t)
=
\dfrac{(t-1)^m}{m!C^m_{m+N}}
P^{(m,-m)}_{N}(t)$,
$P_N$ are Legendre polynomials
and
${P}^{(m,-m)}_{N}$
— non–classical Jacobi polynomials.
The study of polynomials
${\mathbb P}^ {[m]}_{m+N}$ occupies the most part of this work including the problem of expanding
${\mathbb P}^{[m]}_{m+N}$ in Legendre polynomials. The formula for calculating the connection coefficients is obtained.
Ключевые слова:
ordinary differential equation, Dirichlet boundary value problem, Green's operator, Sobolev space, Fourier transform, Riemann–Liouville fractional integral, Legendre, Jacobi and Bessel polynomials, spherical Bessel functions, Gauss hypergeometric functions.
УДК:
517.927.2,
517.58
MSC: 42C05,
34B05,
34B30 Поступила 18 марта 2019 г., опубликована
21 ноября 2019 г.
DOI:
10.33048/semi.2019.16.118