Эта публикация цитируется в
3 статьях
Дискретная математика и математическая кибернетика
Систематические и несистематические совершенные коды бесконечной длины над конечными полями
С. А. Малюгин Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russia
Аннотация:
Let
$F_q$ be a finite field of
$q$ elements
(
$q=p^k$,
$p$ is a prime number). An infinite-dimensional
$q$-ary
vector space
$F_q^{{\mathbb N}_0}$ consists of all sequences
$u = (u_1,u_2,\ldots)$, where
$u_i \in F_q$ and all
$u_i$ are
$0$ except some finite set of indices
$i$ $\in$ $\mathbb
N$. A subset
$C$ $\subset$ $F_q^{{\mathbb N}_0}$ is called a
perfect
$q$-ary code with distance
$3$ if all balls of radius
$1$ (in
the Hamming metric) with centers in
$C$ are pairwise disjoint and
their union covers the space. Define the infinite perfect
$q$-ary
Hamming code
$H_q^\infty$ as the infinite union of the sequence of
finite
$q$-ary codes
${\widetilde H}_q^n$ where for all
$n = (q^m-1)/(q-1)$,
${\widetilde H}_q^n$ is a subcode of
${\widetilde H}_q^{qn+1}$. We prove that all linear perfect
$q$-ary
codes of infinite length are affine equivalent. A perfect
$q$-ary
code
$C \subset F_q^{{\mathbb N}_0}$ is called systematic if
$\mathbb N$ could be split into two subsets
$N_1$,
$N_2$ such that
$C$ is a graphic of some function
$f:F_q^{N_{1,0}}\to F_q^{N_{2,0}}$.
Otherwise,
$C$ is called nonsystematic.
Further general properties of systematic codes are proved.
We also prove a version of Shapiro–Slotnik
theorem for codes of infinite length.
Then, we construct nonsystematic codes of infinite length
using the switchings of
$s < q - 1$ disjoint components.
We say that a perfect code
$C$ has the complete system of triples
if for any three indices
$i_1$,
$i_2$,
$i_3$ the set
$C-C$
contains the vector with support
$\{i_1,i_2,i_3\}$. We construct
perfect codes of infinite length having the complete system of
triples (in particular, such codes are nonsystematic). These codes
can be obtained from the Hamming code
$H_q^\infty$ by switching
some family of disjoint components
${\mathcal B} = \{R_1^{u_1},R_2^{u_2},\ldots\}$.
Unlike the codes of
finite length, the family
$\mathcal B$ must obey the rigid condition
of sparsity. It is shown particularly that if the family of
components
$\mathcal B$ does not satisfy the condition of sparsity
then it can generate a perfect code having non-complete system of
triples.
Ключевые слова:
perfect $q$-ary code, code of infinite length, component, systematic code, nonsystematic code, complete system of triples, condition of sparsity.
УДК:
519.72
MSC: 94B60 Поступила 19 июля 2019 г., опубликована
28 ноября 2019 г.
DOI:
10.33048/semi.2019.16.122