RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2020, том 17, страницы 364–379 (Mi semr1217)

Эта публикация цитируется в 6 статьях

Дифференциальные уравнения, динамические системы и оптимальное управление

Задача об одностороннем контакте пластины Тимошенко и тонкого упругого препятствия

А. И. Фурцев

Lavrentyev Institute of Hydrodynamics, 15, Lavrent'ev ave., Novosibirsk, 630090, Russia

Аннотация: The paper deals with the problem of contact between a plate and a beam acting as an obstacle to the plate. The plate is described in the framework of Timoshenko theory of plates. It is assumed that no mutual penetration between the plate and the obstacle can occur, and so an appropriate non-penetration condition is used. We study the existence and uniqueness of a solution for the equilibrium problem as well as passages to the limit with respect to the shear rigidity parameter. The accompanying optimal control problem is investigated in which the rigidity parameter acts as a control parameter, cost functional characterizes the difference between known functions and the displacements obtained by equilibrium problem solving.

Ключевые слова: contact, equilibrium, Timoshenko plate, beam, thin obstacle, non-penetration condition, minimization problem, variational inequality, rigidity parameter, optimal control.

УДК: 539.3,517.958

MSC: 35Q74, 74G65, 74M15

Поступила 18 декабря 2019 г., опубликована 10 марта 2020 г.

DOI: 10.33048/semi.2020.17.023



Реферативные базы данных:


© МИАН, 2024