RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2020, том 17, страницы 502–512 (Mi semr1226)

Эта публикация цитируется в 1 статье

Дискретная математика и математическая кибернетика

Классификация графов диаметра $2$

Т. И. Федоряева

Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russia

Аннотация: The classification of graphs of diameter $2$ by the number of pairs of diametral vertices contained in the graph is designed. All possible values of the parameters $n$ and $k$ are established for which there exists a $n$-vertex graph of diameter $2$ that has exactly $k$ pairs of diametral vertices. As a corollary, the smallest order of these graphs is found. Such graphs with a large number of vertices are also described and counted. In addition, for any fixed integer $k\geq 1$ inside each distinguished class of $n$-vertex graphs of diameter $2$ containing exactly $k$ pairs of diametral vertices, a class of typical graphs is constructed. For the introduced classes, the almost all property is studied for any $k=k(n)$ with the growth restriction under consideration, covering the case of a fixed integer $k\geq 1$. As a consequence, it is proved that it is impossible to limit the number of pairs of diametral vertices by a given fixed integer $k$ in order to obtain almost all graphs of diameter $2$.

Ключевые слова: graph, diameter $2$, diametral vertices, typical graphs, almost all graphs.

УДК: 519.1+519.173

MSC: 05C75+05C30

Поступила 19 января 2020 г., опубликована 6 апреля 2020 г.

DOI: 10.33048/semi.2020.17.031



Реферативные базы данных:


© МИАН, 2024