RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2020, том 17, страницы 732–737 (Mi semr1246)

Геометрия и топология

Area of a triangle and angle bisectors

A. A. Buturlakinab, S. S. Presnyakovc, D. O. Revinba, S. A. Savindc

a Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russia
b Novosibirsk State University, 1, Pirogova str., Novosibirsk, 630090, Russia
c Specialized Educational Scientific Center of Novosibirsk State University, 1/1, Pirogova str., Novosibirsk, 630090, Russia
d The Orthodox Gymnasium in the name saint Sergius of Radonezh, 3, Akademicheskaya str., Novosibirsk, 630090, Russia

Аннотация: Consider a triangle $ABC$ with given lengths $l_a,l_b,l_c$ of its internal angle bisectors. We prove that in general, it is impossible to construct a square of the same area as $ABC$ using a ruler and compass. Moreover, it is impossible to express the area of $ABC$ in radicals of $l_a,l_b,l_c$.

Ключевые слова: area of a triangle, angle bisectors, ruler and compass construction, Galois group of a polynomial, algebraic equation, solution in radicals.

УДК: 514.112.3, 512.622

MSC: 51M04, 12F10

Поступила 6 мая 2020 г., опубликована 31 мая 2020 г.

Язык публикации: английский

DOI: 10.33048/semi.2020.17.052



Реферативные базы данных:


© МИАН, 2024