RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2020, том 17, страницы 753–768 (Mi semr1248)

Эта публикация цитируется в 8 статьях

Математическая логика, алгебра и теория чисел

On the complexity of the lattices of subvarieties and congruences. II. Differential groupoids and unary algebras

A. V. Kravchenkoabcd, M. V. Schwidefskyabd

a Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russia
b Novosibirsk State University, 1, Pirogova str., Novosibirsk, 630090, Russia
c Siberian Institute of Management, 6, Nizhegorodskaya str., Novosibirsk, 630102, Russia
d Novosibirsk State Technical University, 20, Karl Marx ave.., Novosibirsk, 630073, Russia

Аннотация: We prove that certain lattices can be represented as the lattices of relative subvarieties and relative congruences of differential groupoids and unary algebras. This representation result implies that there are continuum many quasivarieties of differential groupoids such that the sets of isomorphism types of finite sublattices of their lattices of relative subvarieties and congruences are not computable. A similar result is obtained for unary algebras and their lattices of relative congruences.

Ключевые слова: quasivariety, variety, congruence lattice, differential groupoid, unary algebra, undecidable problem, computable set.

УДК: 512.57

MSC: 08C15, 03C05

Поступила 19 ноября 2019 г., опубликована 4 июня 2020 г.

Язык публикации: английский

DOI: 10.33048/semi.2020.17.054



Реферативные базы данных:


© МИАН, 2024