RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2020, том 17, страницы 1463–1477 (Mi semr1296)

Дифференциальные уравнения, динамические системы и оптимальное управление

On equilibrium of a two-dimensional viscoelastic body with a thin Timoshenko inclusion

T. S. Popova

M. K. Ammosov North-Eastern Federal University, 48, Kulakovskogo str., Yakutsk, 677000, Russia

Аннотация: The equilibrium problem for a two-dimensional viscoelastic body containing a thin elastic inclusion modeled as a Timoshenko beam is considered. Cases without delamination as well as the case when the inclusion delaminates from the body forming a crack are studied. Both variational and differential statements of the corresponding problems containing nonlinear boundary conditions, as well as their solvability is justified. The limiting case, as the stiffness parameter of the inclusion tends to infinity is considered and the problem of the thin rigid inclusion is obtained.

Ключевые слова: variational inequality, Timoshenko inclusion, viscoelastic body, thin elastic inclusion, crack, non-penetration conditions, nonlinear boundary conditions.

УДК: 517.9

MSC: 74D05

Поступила 11 мая 2020 г., опубликована 15 сентября 2020 г.

Язык публикации: английский

DOI: 10.33048/semi.2020.17.102



Реферативные базы данных:


© МИАН, 2024