RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2020, том 17, страницы 1552–1570 (Mi semr1302)

Эта публикация цитируется в 2 статьях

Вещественный, комплексный и и функциональный анализ

Weighted Sobolev spaces, capacities and exceptional sets

I. M. Tarasova, V. A. Shlyk

Vladivostok Branch of Russian Customs Academy, 16v, Strelkovaya str., Vladivostok, 690034, Russia

Аннотация: We consider the weighted Sobolev space $W^{m,p}_\omega (\Omega)$, where $\Omega$ is an open subset of $R^n$, $n\ge2$, and $\omega$ is a Muckenhoupt $A_p$-weight on $R^n$, $1\le p<\infty$, $m\in\mathbb N$. For the equalities $W^{m,p}_\omega (\Omega\setminus E)=W^{m,p}_\omega(\Omega)$, $W^{m,p}_\omega(\Omega\setminus E)=W^{m,p}_\omega(\Omega)$ to hold, conditions are obtained in terms of $E$ as a set of zero $(p,m,\omega)$-capacity, or an $NC_{p,\omega}$-set for the first equality. For the equality $W^{m,p}(\Omega)=W^{m,p}(\Omega)$, the conditions are established for $R^n \setminus\Omega$ as a set of zero $(p,m,\omega)$-capacity. Similar results are partially true for $W^m_{p,\omega}(\Omega)$, $L^m_{p,\omega}(\Omega)$.

Ключевые слова: Sobolev space, capacity, Muckenhoupt weight, exceptional set.

УДК: 517.51

MSC: 46E35, 31C45

Поступила 9 августа 2019 г., опубликована 28 сентября 2020 г.

Язык публикации: английский

DOI: 10.33048/semi.2020.17.108



Реферативные базы данных:


© МИАН, 2024