RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2020, том 17, страницы 1869–1899 (Mi semr1321)

Эта публикация цитируется в 1 статье

Математическая логика, алгебра и теория чисел

Repetition-free and infinitary analytic calculi for first-order rational Pavelka logic

A. S. Gerasimov

Peter the Great St.Petersburg Polytechnic University (SPbPU), 29, Polytechnicheskaya str., St. Petersburg, 195251, Russia

Аннотация: We present an analytic hypersequent calculus $\mathrm{G}^3$Ł$\forall$ for first-order infinite-valued Łukasiewicz logic Ł$\forall$ and for an extension of it, first-order rational Pavelka logic $\mathrm{RPL}\forall$; the calculus is intended for bottom-up proof search. In $\mathrm{G}^3$Ł$\forall$, there are no structural rules, all the rules are invertible, and designations of multisets of formulas are not repeated in any premise of the rules. The calculus $\mathrm{G}^3$Ł$\forall$ proves any sentence that is provable in at least one of the previously known analytic calculi for Ł$\forall$ or $\mathrm{RPL}\forall$, including Baaz and Metcalfe's hypersequent calculus $\mathrm{G}$Ł$\forall$ for Ł$\forall$. We study proof-theoretic properties of $\mathrm{G}^3$Ł$\forall$ and thereby provide foundations for proof search algorithms. We also give the first correct proof of the completeness of the $\mathrm{G}$Ł$\forall$-based infinitary calculus for prenex Ł$\forall$-sentences, and establish the completeness of a $\mathrm{G}^3$Ł$\forall$-based infinitary calculus for prenex $\mathrm{RPL}\forall$-sentences.

Ключевые слова: many-valued logic, mathematical fuzzy logic, first-order infinite-valued Łukasiewicz logic, first-order rational Pavelka logic, proof theory, hypersequent calculus, proof search, infinitary calculus.

УДК: 510.644, 510.662

MSC: 03B50, 03B52, 03F07, 03B35

Поступила 30 марта 2020 г., опубликована 18 ноября 2020 г.

DOI: 10.33048/semi.2020.17.127



Реферативные базы данных:


© МИАН, 2024