RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2021, том 18, выпуск 1, страницы 548–560 (Mi semr1380)

Дифференциальные уравнения, динамические системы и оптимальное управление

About convergence of difference schemes for a third-order pseudo-parabolic equation with nonlocal boundary value condition

A. K. Bazzaevab, D. K. Gutnovab

a North Ossetian State University after K.L. Khetagurov, 44-46, Vatutina str., Vladikavkaz, 362025, North Ossetia – Alania, Russia
b Vladikavkaz Institute of Management, 14, Borodinskaya str., Vladikavkaz, 362025, North Ossetia – Alania, Russia

Аннотация: A nonlocal boundary value problem for a third-order pseudo-parabolic equation with variable coefficients is considered. For solving this problem, a priori estimates in the differential and difference forms are obtained. The obtained a priori estimates imply the uniqueness and stability of the solution on a layer with respect to the initial data and the right-hand side and the convergence of the solution of the difference problem to the solution of the differential problem.

Ключевые слова: boundary value problem, a nonlocal boundary value problem, a nonlocal condition, a third-order pseudo-parabolic equation, difference schemes, stability and convergence of difference schemes, a priori estimates, energy inequality method.

УДК: 519.633

MSC: 65M12

Поступила 13 июля 2020 г., опубликована 25 мая 2021 г.

Язык публикации: английский

DOI: 10.33048/semi.2021.18.040



Реферативные базы данных:


© МИАН, 2024