RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2021, том 18, выпуск 1, страницы 579–598 (Mi semr1382)

Дифференциальные уравнения, динамические системы и оптимальное управление

Construction of exponentially decreasing estimates of solutions to a Cauchy problem for some nonlinear systems of delay differential equations

N. V. Pertsev

Sobolev Institute of Mathematics SB RAS, Omsk Division, 13, Pevtsova str., Omsk, 644043, Russia

Аннотация: The behavior of solutions for several models of living systems, presented as the Cauchy problem for nonlinear systems of delay differential equations, is investigated. A set of conditions providing exponentially decreasing estimates of the components of the solutions of the studied Cauchy problem is established. The parameters of exponential estimates are found as a solution of a nonlinear system of inequalities, based on the right part of the system of differential equations. Results of the studies on mathematical models arising in epidemiology, immunology, and physiology are presented.

Ключевые слова: delay differential equations, initial problem, non-negative solutions, exponentially decreasing estimates of the solutions, M-matrix, mathematical models of living systems.

УДК: 517.929:57

MSC: 34K20+92B05

Поступила 15 декабря 2020 г., опубликована 26 мая 2021 г.

Язык публикации: английский

DOI: 10.33048/semi.2021.18.042



Реферативные базы данных:


© МИАН, 2024