RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2021, том 18, выпуск 1, страницы 617–621 (Mi semr1385)

Дискретная математика и математическая кибернетика

Fixed points of cyclic groups acting purely harmonically on a graph

A. D. Mednykhab

a Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russia
b Novosibirsk State University, 1, Pirogova str., Novosibirsk, 630090, Russia

Аннотация: Let $X$ be a finite connected graph, possibly with loops and multiple edges. An automorphism group of $X$ acts purely harmonically if it acts freely on the set of directed edges of $X$ and has no invertible edges. Define a genus $g$ of the graph $X$ to be the rank of the first homology group. A discrete version of the Wiman theorem states that the order of a cyclic group $\mathbb{Z}_n$ acting purely harmonically on a graph $X$ of genus $g>1$ is bounded from above by $2g+2.$ In the present paper, we investigate how many fixed points has an automorphism generating a «large» cyclic group $\mathbb{Z}_n$ of order $n\ge2g-1.$ We show that in the most cases, the automorphism acts fixed point free, while for groups of order $2g$ and $2g-1$ it can have one or two fixed points.

Ключевые слова: graph, homological genus, harmonic automorphism, fixed point, Wiman theorem.

УДК: 519.175.3, 519.172

MSC: 05C30, 39A10

Поступила 6 апреля 2021 г., опубликована 2 июня 2021 г.

Язык публикации: английский

DOI: 10.33048/semi.2021.18.044



Реферативные базы данных:


© МИАН, 2024