RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2021, том 18, выпуск 1, страницы 647–667 (Mi semr1388)

Вещественный, комплексный и и функциональный анализ

Existence results for a class of nonlinear degenerate Navier problems

A. C. Cavalheiro

Department of Mathematics, State University of Londrina, Londrina, 86057-970, Brazil

Аннотация: In this paper we are interested in the existence of solutions for Navier problem associated with the degenerate nonlinear elliptic equations
\begin{eqnarray*} &&{\Delta}{\big[}{\omega}_1(x) {\vert{\Delta}u\vert}^{p-2}{\Delta}u + {\omega}_2(x) {\vert{\Delta}u\vert}^{q-2}{\Delta}u {\big]} -\sum_{j=1}^n D_j{\bigl[}{\omega}_3(x) {\mathcal{A}}_j(x, u, {\nabla}u){\bigr]}\\ && = f_0(x) - \sum_{j=1}^nD_jf_j(x), \ \ {\mathrm{in}} \ \ {\Omega} \end{eqnarray*}
in the setting of the weighted Sobolev spaces.

Ключевые слова: degenerate nonlinear elliptic equations, weighted Sobolev spaces.

УДК: 517.95

MSC: 35J70, 35J60, 35J30

Поступила 6 января 2021 г., опубликована 4 июня 2021 г.

Язык публикации: английский

DOI: 10.33048/semi.2021.18.047



Реферативные базы данных:


© МИАН, 2024