RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2021, том 18, выпуск 2, страницы 782–791 (Mi semr1399)

Математическая логика, алгебра и теория чисел

When a (dual-)Baer module is a direct sum of (co-)prime modules

M. R. Vedadi, N. Ghaedan

Department of Mathematical Sciences, Isfahan University of Technology, Isfahan, 84156-83111, Iran

Аннотация: Since 2004, Baer modules have been considered by many authors as a generalization of the Baer rings. A module $M_R$ is called Baer if every intersection of the kernels of endomorphisms on $M_R$ is a direct summand of $M_R$. It is known that commutative Baer rings are reduced. We prove that if a Baer module $M$ is a direct sum of prime modules, then every direct summand of $M$ is retractable. The converse is true whenever the triangulating dimension of $M$ is finite (e.g. if the uniform dimension of $M$ is finite). Dually, if every direct summand of a dual-Baer module $M$ is co-retractable, then it is a direct sum of co-prime modules and the converse is true whenever the sum is finite or $M$ is a max-module. Among other applications, we show that if $R$ is a commutative hereditary Noetherian ring then a finitely generated $R$-module is Baer iff it is projective or semisimple. Also, over a ring Morita equivalent to a perfect duo ring, all dual-Baer modules are semisimple.

Ключевые слова: Baer module, co-prime module, co-retractable, prime module, dual-Baer, retractable module.

УДК: 512.55

MSC: 16D10, 16D40, 13C05

Поступила 31 января 2021 г., опубликована 6 июля 2021 г.

Язык публикации: английский

DOI: 10.33048/semi.2021.18.057



Реферативные базы данных:


© МИАН, 2024