Математическая логика, алгебра и теория чисел
When a (dual-)Baer module is a direct sum of (co-)prime modules
M. R. Vedadi,
N. Ghaedan Department of Mathematical Sciences, Isfahan University of Technology, Isfahan, 84156-83111, Iran
Аннотация:
Since 2004, Baer modules have been considered by many authors as a generalization of the Baer rings. A module
$M_R$ is called Baer if every intersection of the kernels of endomorphisms on
$M_R$ is a direct summand of
$M_R$. It is known that commutative Baer rings are reduced. We prove that if a Baer module
$M$ is a direct sum of prime modules, then every direct summand of
$M$ is retractable. The converse is true whenever the triangulating dimension of
$M$ is finite (e.g. if the uniform dimension of
$M$ is finite). Dually, if every direct summand of a dual-Baer module
$M$ is co-retractable, then it is a direct sum of co-prime modules and the converse is true whenever the sum is finite or
$M$ is a max-module. Among other applications, we show that if
$R$ is a commutative hereditary Noetherian ring then a finitely generated
$R$-module is Baer iff it is projective or semisimple. Also, over a ring Morita equivalent to a perfect duo ring, all dual-Baer modules are semisimple.
Ключевые слова:
Baer module, co-prime module, co-retractable, prime module, dual-Baer, retractable module.
УДК:
512.55
MSC: 16D10,
16D40,
13C05 Поступила 31 января 2021 г., опубликована
6 июля 2021 г.
Язык публикации: английский
DOI:
10.33048/semi.2021.18.057