RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2022, том 19, выпуск 2, страницы 517–527 (Mi semr1518)

Вычислительная математика

Reconstruction of subsurface scattering objects by the Time Reversal Mirror

G. Reshetova, A. Galaktionova

Institute of Computational Mathematics and Mathematical Geophysics SB RAS 6, Acad. Lavrentieva ave., Novosibirsk, 630090, Russia

Аннотация: Recovery and spatial localization of small scale inhomogeneities in geological media are of fundamental importance to increase the resolution of the geophysical data processing and improve reliability of the results obtained. This paper proposes a method for reconstruction of random subseismic inhomogeneities embedded in a smooth elastic medium using the Time Reversal Mirror approach. The method is based on the time reversibility principle of wave processes in media without attenuation. The interaction of a wavefield with subseismic inhomogeneities is considered as the process of the appearance of "secondary sources" generated by small-scale inclusions. These sources indicate the presence of the geological inhomogeneities in a medium and can be spatially localized using the Time Reversal Mirror method based on the recordings of the data by the acquisition system. Verification of the method proposed was carried out on synthetic data computed by the finite difference method.

Ключевые слова: random media, wave propagation, secondary radiation sources, numerical solutions, Time Reversal Mirror, finite difference schemes.

УДК: 51-73

MSC: 86-10

Поступила 20 мая 2022 г., опубликована 24 августа 2022 г.

Язык публикации: английский

DOI: 10.33048/semi.2022.19.043



Реферативные базы данных:


© МИАН, 2024