RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2022, том 19, выпуск 2, страницы 674–687 (Mi semr1530)

Дискретная математика и математическая кибернетика

On $1$-skeleton of the polytope of pyramidal tours with step-backs

A. V. Nikolaev

P.G. Demidov Yaroslavl State University, 14, Sovetskaya str., Yaroslavl, 150003, Russia

Аннотация: Pyramidal tours with step-backs are Hamiltonian tours of a special kind: the salesperson starts in city $1$, then visits some cities in ascending order, reaches city $n$, and returns to city $1$ visiting the remaining cities in descending order. However, in the ascending and descending direction, the order of neighboring cities can be inverted (a step-back). It is known that on pyramidal tours with step-backs the traveling salesperson problem can be solved by dynamic programming in polynomial time. We define the polytope of pyramidal tours with step-backs $\mathrm{PSB}(n)$ as the convex hull of the characteristic vectors of all possible pyramidal tours with step-backs in a complete directed graph. The $1$-skeleton of $\mathrm{PSB}(n)$ is the graph whose vertex set is the vertex set of the polytope, and the edge set is the set of geometric edges or one-dimensional faces of the polytope. We present a linear-time algorithm to verify vertex adjacency in the $1$-skeleton of the polytope $\mathrm{PSB}(n)$ and estimate the diameter and the clique number of the $1$-skeleton: the diameter is bounded above by $4$ and the clique number grows quadratically in the parameter $n$.

Ключевые слова: pyramidal tour with step-backs, $1$-skeleton, vertex adjacency, graph diameter, clique number, pyramidal encoding.

УДК: 519.16, 514.172.45

MSC: 52B05, 52B12, 90C57

Поступила 23 апреля 2022 г., опубликована 6 сентября 2022 г.

Язык публикации: английский

DOI: 10.33048/semi.2022.19.056



Реферативные базы данных:


© МИАН, 2024