RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2022, том 19, выпуск 2, страницы 792–803 (Mi semr1539)

Эта публикация цитируется в 1 статье

Математическая логика, алгебра и теория чисел

Dual coalgebra of the differential polynomial algebra in one variable and related coalgebras

V. N. Zhelyabin, P. S. Kolesnikov

Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia

Аннотация: We show that the dual coalgebra of the polynomial algebra in one variable is the space of linearly recursive sequences over an arbitrary field. Moreover, this coalgebra is a differential one relative to the dual standard derivation and does not contain nonzero finite-dimensional differentially closed subcoalgebras if the characteristic of the ground field is zero. We construct a Novikov coalgebra which is the dual coalgebra of the left-symmetric Witt algebra of index one. Also, we construct a Jordan supercoalgebra which is dual to the Jordan superalgebra of vector type of the polynomial algebra in one variable. All these coalgebras do not contain non-zero finite-dimensional subcoalgebras if the characteristic of ground field is zero. It is shown that over a field of characteristic different from 2 the adjoint Lie coalgebra of the dual coalgebra of the left-symmetric Witt algebra of index one is isomorphic to the dual coalgebra of the Witt algebra of index one.

Ключевые слова: coalgebra, coderivation, associative commutative algebra, differential algebra, Novikov algebra, Lie algebra, Witt algebra, Jordan superalgebra, locally finite coalgebra.

УДК: 512.554.7

MSC: 17C70

Поступила 24 июня 2022 г., опубликована 11 ноября 2022 г.

DOI: 10.33048/semi.2022.19.066



Реферативные базы данных:


© МИАН, 2024