RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2022, том 19, выпуск 2, страницы 1015–1037 (Mi semr1556)

Дифференциальные уравнения, динамические системы и оптимальное управление

On the inviscid limit of stationary measures for the stochastic system of the Lorenz model for a baroclinic atmosphere

Yu. Yu. Klevtsova

Siberian State University of Telecommunications and Information Science, ul. Kirova, 86, 630102, Novosibirsk, Russia

Аннотация: The paper is concerned with a nonlinear system of partial differential equations with parameters and the random external force. This system describes the two-layer quasi-solenoidal Lorenz model for a baroclinic atmosphere on a rotating two-dimensional sphere. The stationary measures for the Markov semigroup defined by the solutions of the Cauchy problem for this problem is considered. One parameter of the system is highlighted – the coefficient of kinematic viscosity. The sufficient conditions on the random right-hand side and the other param-ters are derived for the existence of a limiting nontrivial point for any sequence of the stationary measures for this system when any sequence of the kinematic viscosity coefficients goes to zero. As it is well known, this coefficient in practice is extremely small. A number of integral properties are proved for the limiting measure. In addition, these results are obtained for one similar baroclinic atmosphere system.

Ключевые слова: baroclinic atmosphere, Lorenz model, random external force, stationary measure, inviscid limit.

УДК: 517.956.8

MSC: 35G55,~35Q86

Поступила 14 ноября 2022 г., опубликована 22 декабря 2022 г.

Язык публикации: английский

DOI: 10.33048/semi.2022.19.083



Реферативные базы данных:


© МИАН, 2024