RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2022, том 19, выпуск 2, страницы 1054–1076 (Mi semr1558)

Математическая логика, алгебра и теория чисел

О вычислениях над упорядоченными кольцами

И. В. Латкинa, А. В. Селиверстовb

a D. Serikbayev East Kazakhstan Technical University, Protozanov Street, 69, Ust-Kamenogorsk, 070004, The Republic of Kazakhstan
b Institute for Information Transmission Problems of the Russian Academy of Sciences, Bolshoy Karetny, 19, Moscow, 127051, Russia

Аннотация: We consider generalized register machines over ordered rings with an auxiliary binary operation. In particular, we consider the ring of integers, its infinite Cartesian power, and ultrapowers. The feasibility and computational complexity of some algorithms are discussed. There is also given an example of a non-factorial ring, which is elementarily equivalent to the ring of integers. It is shown that non-deterministic computations with integers can be implemented as computations over the Cartesian power of the ring of integers. It is also possible to model calculations with an oracle using such machines. This provides an algebraic approach to describing some classes of computational complexity. However, this model of computation differs significantly from alternating machines. Moreover, various types of non-deterministic machines are considered.

Ключевые слова: generalized register machine, ring, integral domain, integers, ultrapower, non-deterministic computations, polynomial time, oracle.

УДК: 510.52

MSC: 03D15, 68Q09

Поступила 20 января 2022 г., опубликована 29 декабря 2022 г.

DOI: 10.33048/semi.2022.19.085



Реферативные базы данных:


© МИАН, 2024