RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2023, том 20, выпуск 1, страницы 150–164 (Mi semr1578)

Эта публикация цитируется в 1 статье

Геометрия и топология

Задача о тени и поверхности постоянной кривизны

А. В. Костин

Kazan Federal University, Elabuga Institute Kazanskaya, 89, 423604, Elabuga, Russia

Аннотация: In this paper we consider the problem of shadow in the Lobachevsky space. This problem can be considered as the establishment of conditions to ensure the membership of the points to the generalized convex hull of a family of sets. The boundary values of the parameters are determined for which the same configurations of balls ensure that the point belongs to the generalized convex hull of balls in Euclidean and hyperbolic spaces. In addition to balls, the article discusses families of horoballs, as well as combinations of balls and horoballs. The article shows how the Euclidean surfaces of revolution of constant negative curvature are connected with tangent cones to the horospheres of the Lobachevsky space.

Ключевые слова: problem of shadow, hyperbolic space, generalized convexity, sphere, ball, surface of constant curvature, horosphere, horoball.

УДК: 514.13

MSC: 51M09

Поступила 29 марта 2020 г., опубликована 20 февраля 2023 г.

DOI: 10.33048/semi.2023.20.014



© МИАН, 2024