RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2023, том 20, выпуск 2, страницы 755–772 (Mi semr1607)

Теория вероятностей и математическая статистика

On functional limit theorems for branching processes with dependent immigration

S. O. Sharipov

V.I. Romanovskiy Institute of Mathematics, 4b, University street, 100174, Tashkent, Uzbekistan

Аннотация: In this paper we consider a triangular array of branching processes with non-stationary immigration. We prove a weak convergence of properly normalized branching processes with immigration to deter-ministic function under assumptions that immigration satisfies some mixing conditions, the offspring mean tends to its critical value 1 and immigration mean and variance controlled by regularly varying functions. Moreover, we obtain a fluctuation limit theorem for branching process with immig-ration when immigration generated by a sequence of $m$-dependent random variables. In this case the limiting process is a time-changed Wiener process. Our results extend the previous known results in the literature.

Ключевые слова: Branching process, immigration, regularly varying functions, $m$-dependence, $\rho$-mixing, functional limit theorems.

УДК: ???.?

MSC: ??X??

Поступила 28 ноября 2022 г., опубликована 20 октября 2023 г.

Язык публикации: английский

DOI: 10.33048/semi.2023.20.044



© МИАН, 2024