RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2023, том 20, выпуск 2, страницы 847–853 (Mi semr1614)

Дискретная математика и математическая кибернетика

Edge $4$-critical Koester graph of order $28$

A. A. Dobrynin

Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia

Аннотация: A Koester graph $G$ is a simple $4$-regular plane graph formed by the superposition of a set $S$ of circles in the plane, no two of which are tangent and no three circles have a common point. Crossing points and arcs of $S$ correspond to vertices and edges of $G$, respectively. A graph $G$ is edge critical if the removal of any edge decreases its chromatic number. A $4$–chromatic edge critical Koester graph of order $28$ generated by intersection of six circles is presented. This improves an upper bound for the smallest order of such graphs. The previous upper bound was established by Gerhard Koester in 1984 by constructing a graph with $40$ vertices.

Ключевые слова: plane graph, $4$-critical graph, Grötzsch–Sachs graph, Koester graph.

УДК: 519.17

MSC: 05C15

Поступила 3 июня 2023 г., опубликована 26 октября 2023 г.

Язык публикации: английский

DOI: 10.33048/semi.2023.20.051



© МИАН, 2024