Сиб. электрон. матем. изв.,
2023 , том 20, выпуск 2, страницы 961–980
(Mi semr1621)
Теория вероятностей и математическая статистика
On the moderate deviation principle for $m$ -dependent random variables with sublinear expectation
E. V. Efremov a ,
A. V. Logachov bc a Novosibirsk State University, 2, Pirogova str., Novosibirsk, 630090, Russia
b Lab. of Probability Theory and Math. Statistics, Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russia
c Dep. of Computer Science in Economics, Novosibirsk State Technical University pr. K. Marksa, 20, 630073, Novosibirsk, Russia
Аннотация:
In this paper, we obtain the moderate deviation principle for sums of
$m$ –dependent strictly stationary random variables in the space with sublinear expectation. Unlike known results, we will require random variables to satisfy a less restrictive Cramer-like condition.
Ключевые слова:
large deviation principle, moderate deviation principle, sublinear expectation, $m$ -dependent random variables, stationary sequences.
УДК:
519.21
MSC: 60F10 ,
60A99 Поступила 31 декабря 2023 г. , опубликована
12 ноября 2023 г.
Язык публикации: английский
DOI:
10.33048/semi.2023.20.058
© , 2024