RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2023, том 20, выпуск 2, страницы 1185–1199 (Mi semr1636)

Вещественный, комплексный и и функциональный анализ

Multivalued quasimöbius property and bounded turning

N. V. Abrosimov, V. V. Aseev

Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia

Аннотация: The class of multivalued mappings with bounded angular distortion (BAD) property in metric spaces can be considered as a multivalued analogгу for quasimöbius mappings. We study the connections between quasimeromorphic self-mappings of $X= \bar{R}^n$ and multivalued mappings $F: X\to 2^X$ with BAD property. The main result of the paper concerns the multivalued mappings $F: D\to 2^{\bar{\mathbf C}}$ with BAD property of a domain $D\subset \bar{\mathbf{C}}$. If the image $F(x)$ of each point $x\in D$ is either a point or a continuum with bounded turning then $F$ is proved to be a single-valued quasimöbius mapping. The crucial point in the proof of this result is the local connectedness of the set $F(X)$ for the multivalued continuous mapping $F: X\to 2^Y$ with BAD property. We obtain sufficient conditions providing $F(X)$ to have local connectedness or bounded turning property in the most general case.

Ключевые слова: multivalued quasimöbius mapping, multivalued hyperinjective mapping, Ptolemaic characteristic of tetrad, generalized angle, bounded angular distortion, local connectedness.

УДК: 517.54

MSC: 30C65, 30L10

Поступила 1 октября 2023 г., опубликована 20 ноября 2023 г.

Язык публикации: английский

DOI: doi.org/10.33048/semi.2023.20.073



© МИАН, 2024