RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2023, том 20, выпуск 2, страницы 1211–1268 (Mi semr1638)

Вычислительная математика

О математическом моделировании COVID-19

О. И. Криворотько, С. И. Кабанихин

Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia

Аннотация: The mathematical models for analysis and forecasting of COVID-19 pandemic based on time-series models, differential equations (SIR models based on odinary, partial and stochastic differential equations), agent-based models, mean field games and its combinations are considered. Inverse problems for mathematical models in epidemiology of COVID-19 are formulated in the variational form. The numerical results of modeling and scenarios of COVID-19 propagation in Novosibirsk region are demonstrated and discussed. The epidemiology parameters of COVID-19 propagation in Novosibirsk region (contagiosity, hospitalization and mortality rates, asymptomatic cases) are identified. The combination of differential and agent-based models increases the quality of forecast scenarios.

Ключевые слова: epidemiology, COVID-19, time-series models, SIR, agent-based models, mean field games, inverse problems, forecasting.

УДК: 519.688

MSC: 65M32

Поступила 12 декабря 2022 г., опубликована 21 ноября 2023 г.

DOI: 10.33048/semi.2023.20.075



© МИАН, 2024