RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2023, том 20, выпуск 2, страницы 1320–1340 (Mi semr1643)

Вещественный, комплексный и и функциональный анализ

Гауссовские полугруппы операторов в пространстве борелевских функций на сепарабельном гильбертовом пространстве

О. Е. Галкинa, С. Ю. Галкинаa, И. Ю. Ястребоваb

a National Research University «Higher School of Economics», B. Pecherskaya St., 25/12, 603155, Nizhny Novgorod, Russia
b National Research Lobachevsky State University of Nizhny Novgorod, Gagarin Av., 23, 603022, Nizhny Novgorod, Russia

Аннотация: The concept of a Gaussian family of Borel measures on a separable Hilbert space is introduced in the paper. Necessary and sufficient conditions are found under which a Gaussian family of measures generates a semigroup of operators on the space of complex bounded Borel functions. These conditions are expressed in the form of a system of functional equations and initial conditions for operator-valued functions on the real semi-axis. A system of differential equations is derived from the system of functional equations and it is proved that the Cauchy problem has a unique solution for it. Several examples of Gaussian semigroups of operators are given.

Ключевые слова: gaussian semigroup of operators, Gaussian family of Borel measures, operator Riccati differential equation, determinant of infinite order, system of functional equations.

УДК: 517.923; 517.965; 517.983; 519.218.7

MSC: 20M20, 28C20, 34G20, 39B42

Поступила 7 октября 2023 г., опубликована 7 декабря 2023 г.

DOI: 10.33048/semi.2023.20.080



© МИАН, 2024