Сиб. электрон. матем. изв.,
2024, том 21, выпуск 1,страницы 81–97(Mi semr1670)
Математическая логика, алгебра и теория чисел
On connection between Rota—Baxter operators and solutions of the classical Yang—Baxter equation with an ad-invariant symmetric part on general linear algebra
Аннотация:
In the paper, we find the connection between solutions of the classical Yang—Baxter equation with an ad-invariant symmetric part and Rota—Baxter operators of special type on a real general linear algebra $gl_n(\mathbb R)$. Using this connection, we classify solutions of the classical Yang—Baxter equation with an ad-invariant symmetric part on $gl_2(\mathbb C)$ using the classification of Rota—Baxter operators of nonzero weight on $gl_2(\mathbb C)$ and a classification of Rota—Baxter operators of weight 0 on $sl_2(\mathbb C)$.
Ключевые слова:Lie bialgebra, Rota—Baxter operator, classical Yang—Baxter equation, general linear Lie algebra.