RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2024, том 21, выпуск 1, страницы 501–512 (Mi semr1699)

Математическая логика, алгебра и теория чисел

Finite groups with modular and submodular subgroups

I. L. Sokhor

Francisk Skorina Gomel State University, Kirova Str. 119, 246019, Gomel, Belarus

Аннотация: A subgroup $H$ of a group $G$ is modular in $G$ if $H$ is a modular element of subgroup lattice of $G$, and is submodular in $G$ if there is a subgroup chain $H=H_0\leq\ldots\leq H_i\leq H_{i+1}\leq \ldots \leq H_n=G$ such that $H_i$ is modular in $H_{i+1}$ for every $i$. We prove that if every Sylow subgroup of a group $G$ is modular in $G$, then $G$ is supersolvable and $G/F(G)$ is a cyclic group of square-free order. We also obtain new signs of supersolvabilty of groups with some submodular subgroups (normalizers of Sylow subgroups, Hall subgroups, maximal subgroups). For a such group $G$, $G/\Phi(G)$ is a supersolvable group of square-free exponent. Moreover, we describe the structure of groups with modular (submodular) or self-normalizing primary subgroups.

Ключевые слова: finite group, modular subgroup, submodular subgroup, self-normalizing subgroup.

УДК: 512.542

MSC: 20D30

Поступила 29 декабря 2023 г., опубликована 23 июня 2024 г.

Язык публикации: английский

DOI: doi.org/10.33048/semi.2024.21.036



© МИАН, 2024