RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2024, том 21, выпуск 2, страницы 729–740 (Mi semr1712)

Дифференциальные уравнения, динамические системы и оптимальное управление

Equilibrium problem for a Kirchhoff–Love plate contacting with the lateral surface along a strip of a given width

N. P. Lazarev, D. Y. Nikiforov, G. M. Semenova

North-Eastern Federal University, Kulakovsky str., 48, 677000, Yakutsk, Russia

Аннотация: A new model of a Kirchhoff–Love plate is justified, which may come into contact by its lateral surface with a non-deformable obstacle along a strip of a given width. The non-deformable obstacle restricts displacements of the plate along the outer lateral surface. The obstacle is specified by a cylindrical surface, the generatrices of which are perpendicular to the midplane of the plate. A problem is formulated in variational form. A set of admissible displacements is determined in a suitable Sobolev space in the framework of a clamping condition and a non-penetration condition of the Signorini type. The non-penetration condition is given as a system of two inequalities. The existence and uniqueness of a solution to the problem is proven. An equivalent differential formulation and optimality conditions are found under the assumption of additional regularity of the solution to the variational problem. A qualitative connection has been established between the proposed model and a previously studied problem in which the plate is in contact over the entire lateral surface.

Ключевые слова: contact problem, limit passage, variational inequality, nonpenetration condition.

УДК: 517.97, 517.958

MSC: 49J40, 49K20

Поступила 8 апреля 2024 г., опубликована 21 октября 2024 г.

DOI: doi.org/10.33048/semi.2024.21.049



© МИАН, 2024