Статьи
Asymptotic profile of solutions for the critical Sobolev type equation on a half-line
R. A. Goldstein,
M. K. Silva,
A. G. Crans Instituto de Matemáticas, UF-Rio, Brasil
Аннотация:
We study nonlinear Sobolev type equations on half-line
\[
\{
\begin{array}
[c]{c}
\partial_{t}u+\mathbb{L}u=\lambda|u|^{\rho}u_{x}^{\sigma}, x\in\mathbf{R}^{+}, t>0,
u(0,x)=u_{0}(x), x\in\mathbf{R}^{+},
\end{array}
.
\]
with $\rho+\sigma=\frac52,\rho>0,\sigma>0,\lambda\in\mathbf{C}$. The linear operator
$\mathbb{L}$ is defined as
\[
\mathbb{L}=\mathcal{L}^{-1}K(p)\mathcal{L}.
\]
Here
$\mathcal{L}^{-1}$ and
$\mathcal{L}$ are Laplace transform and inverse Laplace transform with respect to space variable
$x$ and
\begin{equation*}
K(p)=p^{2}\sum_{j=0}^{m}a_{j}p^{2j}\left(\sum_{l=0}^{m+1}b_{l}p^{2l}\right) ^{-1},
\end{equation*}
$m>0$ is integer number.The aim of this paper is to prove the global existence of solutions to the
initial-boundary value problem and to find the main term of the asymptotic representation of solutions in the critical convective case.
УДК:
535.5
MSC: 35Q40,
35Q35 Поступила 14 марта 2006 г., опубликована
24 июля 2006 г.
Язык публикации: английский