RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2006, том 3, страницы 393–401 (Mi semr216)

Статьи

On uniformly continuous operators and some weight-hyperbolic function Banach algebra

Ana L. Barrenechea, Carlos C. Peña

UNCentro – FCExactas – NuCoMPA, Dpto. de Matemáticas, Argentina

Аннотация: We consider an abelian non-unitary Banach algebra $\mathfrak{A}$, ruled by an hyperbolic weight, defined on certain space of Lebesgue measurable complex valued functions on the positive axis. Since the non-convolution Banach algebra $\mathfrak{A}$ has its own interest by its applications to the representation theory of some Lie groups, we search on various of its properties. As a Banach space, $\mathfrak{A}$ does not have the Radon–Nikodým property. So, it could be exist not representable linear bounded operators on $\mathfrak{A}$ (cf. [6]). However, we prove that the class of locally absolutely continuous bounded operators are representable and we determine their kernels.

УДК: 517.98

MSC: 46J20, 46J40

Поступила 19 декабря 2005 г., опубликована 18 декабря 2006 г.

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024