RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2012, том 9, страницы 156–160 (Mi semr345)

Дискретная математика и математическая кибернетика

On a question of Dirac on critical and vertex critical graphs

Tommy Jensen, Mark Siggers

College of Natural Sciences, Kyungpook National University, Daegu 702-701, South Korea

Аннотация: We give a construction which for any $N$ provides a graph on $n>N$ vertices which is vertex-critical with respect to being $4$-chromatic, has at least $cn^2$ edges that are non-critical (i.e., the removal of any one does not change the chromaticity) and has at most $Cn$ critical edges for some fixed positive constants $c$ and $C$. Thus for any $\varepsilon>0$ we get $4$-vertex-critical graphs in which less than an $\varepsilon$-proportion of the edges are non-critical.

Ключевые слова: critical graph, vertex-criticality, critical edge, Dirac problem.

УДК: 519.17

MSC: 05C15

Поступила 3 февраля 2012 г., опубликована 21 февраля 2012 г.

Язык публикации: английский



© МИАН, 2024