RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2012, том 9, страницы 247–255 (Mi semr352)

Эта публикация цитируется в 9 статьях

Геометрия и топология

Brahmagupta formula for cyclic quadrilaterals in the hyperbolic plane

A. D. Mednykhab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University

Аннотация: The Heron formula relates the area of an Euclidean triangle to its side lengths. Indian mathematician and astronomer Brahmagupta, in the seventh century, gave the analogous formulas for a convex cyclic quadrilateral. Several non-Euclidean versions of the Heron theorem have been known for a long time.
In this paper we consider a convex hyperbolic quadrilateral inscribed in a circle, horocycle or one branch of an equidistant curve. This is a natural hyperbolic analog of the cyclic quadrilateral in the Euclidean plane. We find a few versions of the Brahmahupta formula for such quadrilaterals.

Ключевые слова: Heron formula, Brahmagupta formula, cyclic polygon, hyperbolic quadrilateral.

УДК: 514.13

MSC: 51M09

Поступила 15 января 2012 г., опубликована 12 мая 2012 г.

Язык публикации: английский



© МИАН, 2024