Аннотация:
This is a survey paper on various results relates to the following theorem first proved by A.D. Alexandrov: Let $S$ be an analytic convex sphere-homeomorphic surface in $\mathbb R^3$ and let $k_1(\boldsymbol{x})\leqslant k_2(\boldsymbol{x})$ be its principal curvatures at the point$\boldsymbol{x}$. If the inequalities $k_1(\boldsymbol{x})\leqslant k\leqslant k_2(\boldsymbol{x})$ thold true with some constant $k$ for all$\boldsymbol{x}\in S$then $S$ is a sphere. The imphases is on a result of Y. Martinez-Maure who first proved that the above statement is not valid for convex $C^2$-surfaces. For convenience of the reader, in addendum we give a Russian translation of that paper by Y. Martinez-Maure originally published in French in C. R. Acad. Sci., Paris, Sér. I, Math.332 (2001), 41–44.