RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2014, том 11, страницы 18–25 (Mi semr468)

Эта публикация цитируется в 5 статьях

Теория вероятностей и математическая статистика

Convergence rate estimators for the number of ones in outcome sequence of MCV generator with $m$-dependent registers items

N. M. Mezhennaya

Bauman Moscow State University, 2-nd Baumanskaya st., 5, 105005, Moscow, Russia

Аннотация: This paper is focused on studying properties of the number of ones $\xi_{r}$ in outcome sequence of MCV generator with $r$ registers over $GF(2).$ We concern on the case when generator outcome sequence has length close to the cycle length and registers filled with $m$-dependent binary random variables. Exact expressions for mean and variance of ${{\xi }_{r}}$ are given. We derive estimate in uniform metric between cumulative distribution functions of the standardized number of ones in MCV generator outcome sequence and product of $r$ independent standard normal random variables. The estimate allows to prove limit theorem for ${{\xi }_{r}}$ when number $r$ is fixed. We also estimate distance (in uniform metric) between the cumulative distribution function of normalized $\xi_{r}$ and log-normal distribution law. This result allows to prove a normal-type limit theorem for $r\to \infty$.

Ключевые слова: MCV generator, normal-type limit theorem, uniform distance estimate, m-dependent random variables.

УДК: 519.214

MSC: 60F05

Поступила 18 ноября 2013 г., опубликована 30 января 2014 г.

Язык публикации: английский



© МИАН, 2024