RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2014, том 11, страницы 434–443 (Mi semr498)

Эта публикация цитируется в 1 статье

Математическая логика, алгебра и теория чисел

Unification Problem in Nelson's Logic $\mathbf{N4}$

S. P. Odintsova, V. V. Rybakovb

a Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
b School of Computing, Mathematics and DT, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, U.K.

Аннотация: We consider the unification problem for formulas with coeffi-cients in the Nelson's paraconsitent logic $\mathbf{N4}$. By presence coefficients (parameters) the problem is quite not trivial and challenging (yet what makes the problem for $\mathbf{N4}$ to be peculiar is missing of replacement equivalents rule in this logic). It is shown that the unification problem in $\mathbf{N4}$ is decidable for $\sim$-free formulas. We also show that there is an algorithm which computes finite complete sets of unifiers (so to say — all best unifiers) for unifiable in $\mathbf{N4}$ $\sim$-free formulas (i.e. any unifier is equivalent to a substitutional example of a unifier from this complete set). Though the unification problem for all formulas (not $\sim$-free formulas) remains open.

Ключевые слова: Nelson's logic, strong negation, unification, complete sets of unifiers, decidability, Vorob'ev translation.

УДК: 510.64

MSC: 03F99

Поступила 16 января 2014 г., опубликована 3 июня 2014 г.

Язык публикации: английский



© МИАН, 2024