RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2014, том 11, страницы 451–456 (Mi semr500)

Эта публикация цитируется в 2 статьях

Дискретная математика и математическая кибернетика

On the multidimensional permanent and $q$-ary designs

V. N. Potapovab

a Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
b Novosibirsk State University, Pirogova st., 2, 630090, Novosibirsk, Russia

Аннотация: An $H(n,q,w,t)$ design is a collection of some $(n-w)$-faces of the hypercube $Q^n_q$ that perfectly pierce all $(n-t)$-faces $(n\geq w>t)$. An $A(n,q,w,t)$ design is a collection of some $(n-t)$-faces of $Q^n_q$ that perfectly cover all $(n-w)$-faces. The numbers of H-designs and A-designs are expressed in terms of the multidimensional permanent. Several constructions of H-designs and A-designs are given and the existence of $H(2^{t+1},s2^t,2^{t+1}-1,2^{t+1}-2)$ designs is proven for all $s,t\geq 1$.

Ключевые слова: Steiner system, H-design, perfect matching, clique matching, MDS code, permanent.

УДК: 519.14

MSC: 05B05, 05C65

Поступила 6 апреля 2014 г., опубликована 16 июня 2014 г.



© МИАН, 2024