RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2015, том 12, страницы 766–776 (Mi semr625)

Эта публикация цитируется в 1 статье

Теория вероятностей и математическая статистика

Об условиях гауссовской аппроксимации ядерных оценок для плотности распределения

А. С. Карташовa, А. И. Саханенкоb

a Novosibirsk State University, st. Pirogova, 2, 630090, Novosibirsk, Russia
b Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia

Аннотация: Recently E. Gine, V. Koltchinskii and L. Sakhanenko (2004) investigated asymptotical behavior of a random variable of the form $\sqrt{n h_n} \sup\nolimits_{t \in \mathbf{R}} \left | \psi(t) (f_n(t) - \mathbf{E} f_n (t)) \right | $ with some weight function $\psi(t)$, where $f_n$ is a kernel density estimator. The proof of their limit theorems consists of a large number of technically difficult stages and uses more than ten bulky assumptions. In this work we show that under simpler and wider conditions the above stated problem is reduced to the study of asymptotics of a supremum of some special Gaussian process. The obtained result can be used in further investigation of functionals based on empirical processes and kernel density estimators. Our proof is based on the well-known approximation of Komlos, Major and Tusnady (1975).

Ключевые слова: kernel density estimators, brownian motion, brownian bridge, KMT approximation, function of bounded variation.

УДК: 519.21

MSC: 62G07

Поступила 29 августа 2015 г., опубликована 5 ноября 2015 г.

DOI: 10.17377/semi.2015.12.062



© МИАН, 2024