RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2016, том 13, страницы 49–74 (Mi semr656)

Эта публикация цитируется в 1 статье

Дифференциальные уравнения, динамические системы и оптимальное управление

Усредненные модели изотермической акустики в конфигурации «жидкость–пороупругая среда»

А. М. Мейрманов, С. А. Гриценко, А. А. Герус

Belgorod state national research University, Pobedy, 85, 308015, Belgorod, Russia

Аннотация: We consider a mathematical model of the isothermal acoustics in composite medium with two different components: liquid region and the elastic body perforated by a system of pores, filled the same liquid. The model is based on the classical axioms of continuum mechanics and contains rapidly oscillating coefficients that depend on a small parameter. Such a model, although precise enough, cannot, however, be used for numerical calculations. The problem is solved by using homogenization, i. e. the derivation of the equations not containing rapidly oscillating coefficients. Separately for the fluid and separately for poroelastic medium results already obtained previously. In this configuration of the two-component medium the main problem is the conditions of continuity at the common boundary between the liquid region and poroelastic region. In the present work are displayed six homogenized models of different complexity with the various coefficients characterizing the medium.

Ключевые слова: composite medium, periodic structure, isothermal Stokes equations, acoustic equation, poro-elasticity, homogenization of periodic structures, two-scale convergence.

УДК: 517.958

MSC: 35B27

Поступила 26 июня 2015 г., опубликована 11 февраля 2016 г.

DOI: 10.17377/semi.2016.12.005



© МИАН, 2024