RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2016, том 13, страницы 426–433 (Mi semr687)

Математическая логика, алгебра и теория чисел

О конечных группах, порожденных инволюциями

Б. М. Веретенников

Ural Federal University, 19 Mira street, 620002 Ekaterinburg, Russia

Аннотация: All groups in the abstract are finite. In theorem $1$ we prove that any group $A$, generated by $n$ involutions ($n \geq 3$), is a section $G/N$ of some group $B$, generated by three involutions (respectively, generated by an element of order $n$ and involution) in which $B/G$ is isomorphic $D_{2n}$ (respectively, $Z_n$). In theorem $2$ we consider the case when $A$ is a $2$-group. In theorem 3 and 4 we prove that any $2$-group is a section of a $2$-group generated by $3$ involutions and a section of a $2$-group generated by element of order $2^m$ and involution ($m$ may be arbitrary integer more than $1$). In the last part of the paper we construct some examples of $2$-groups, generated by $3$ involutions and of $2$-groups, generated by an element and involution of derived lengths $4$ and $3$ respectively.

Ключевые слова: finite group generated by involutions; finite group generated by three involutions, finite $2$-group, Alperin group, definition of group by means of generators and defining relations.

УДК: 512.54

MSC: 20B05

Поступила 1 февраля 2016 г., опубликована 24 мая 2016 г.

DOI: 10.17377/semi.2016.13.037



Реферативные базы данных:


© МИАН, 2024