Аннотация:
As is well known, subreducts of modules over commutative rings in a given variety form a quasivariety. Stanovský proved that a differential mode is a subreduct of a module over a commutative ring if and only if it is abelian. In the present article, we consider a minimal variety of differential groupoids with nonzero multiplication and show that its abelian algebras form the least subquasivariety with nonzero multiplication.
Ключевые слова:differential groupoid, module over a commutative ring, term conditions, quasivariety.