Аннотация:
In this paper we charaterize the
integrability and the non-existence of
limit cycles of Kolmogorov systems of the form
\begin{equation*}
\left\{
\begin{array}{l}
x^{\prime }=x\left( P\left( x,y\right) +\left( \frac{R\left( x,y\right) }{
S\left( x,y\right) }\right) ^{\lambda }\right) , \\
y^{\prime }=y\left( Q\left( x,y\right) +\left( \frac{R\left( x,y\right) }{
S\left( x,y\right) }\right) ^{\lambda }\right) ,
\end{array}
\right.
\end{equation*}
where $P\left( x,y\right) ,$$Q\left( x,y\right) ,$$R\left( x,y\right) ,$$
S\left( x,y\right) $ are homogeneous polynomials of degree $n,$$n,$$m,$$a$ respectively and $\lambda \in
\mathbb{Q}
^{\ast }$. Concrete example exhibiting the applicability of our
result is introduced.
Ключевые слова:Kolmogorov system, first integral, periodic orbits, limit cycle.