RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2016, том 13, страницы 1290–1299 (Mi semr751)

Эта публикация цитируется в 4 статьях

Математическая логика, алгебра и теория чисел

Some simple groups which are determined by their character degree graphs

S. Heydari, N. Ahanjideh

Department of pure Mathematics, Faculty of Mathematical Sciences, Shahre-kord University, P. O. Box 115, Shahre-kord, Iran

Аннотация: Let $G$ be a finite group, and let $\rho(G)$ be the set of prime divisors of the irreducible character degrees of $G$. The character degree graph of $G$, denoted by $\Delta(G)$, is a graph with vertex set $\rho(G)$ and two vertices $a$ and $b$ are adjacent in $\Delta(G)$, if $ab$ divides some irreducible character degree of $G$. In this paper, we are going to show that some simple groups are uniquely determined by their orders and character degree graphs. As a consequence of this paper, we conclude that $M_{12}$ is not determined uniquely by its order and its character degree graph.

Ключевые слова: character degree, minimal normal subgroup, Sylow subgroup.

УДК: 512.542.5

MSC: 20C15, 20E99

Поступила 21 сентября 2016 г., опубликована 23 декабря 2016 г.

Язык публикации: английский

DOI: 10.17377/semi.2016.13.101



Реферативные базы данных:


© МИАН, 2024