Эта публикация цитируется в
3 статьях
Математическая логика, алгебра и теория чисел
О максимальных графических разбиениях
В. А. Баранский,
Т. А. Сеньчонок Ural Federal University, pr. Lenina, 51, 620083, Ekaterinburg, Russia
Аннотация:
A partition of an integer
$m$ is a sequence of nonnegative integers in nonincreasing order whose sum is equal to
$m$. The length of a partition is the number of its nonzero parts. The set of all graphical partitions of
$2m$, for a given
$m$, is an order ideal of the lattice of all partitions of
$2m$. We find new characterization of maximal graphical partitions and the number of maximal graphical partitions of length
$n$. For each graphical partition
$\lambda$ of integer
$2m$ we construct maximal graphical partition
$\mu$ of integer
$2m$ with the same rank, which is dominate
$\lambda$; also we find an algorithm that builds a sequence of elementary transformations from
$\mu$ to
$\lambda$.
Ключевые слова:
graph, lattice, integer partition, graphical partition, Ferrer's diagram.
УДК:
519.178
MSC: 05A17 Поступила 1 сентября 2016 г., опубликована
10 февраля 2017 г.
DOI:
10.17377/semi.2017.14.012