RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2017, том 14, страницы 586–599 (Mi semr807)

Эта публикация цитируется в 1 статье

Дифференциальные уравнения, динамические системы и оптимальное управление

On crack propagations in elastic bodies with thin inclusions

A. M. Khludnevab, T. S. Popovac

a Lavrentyev Institute of Hydrodynamics, pr. Lavrent'eva, 15, 630090, Novosibirsk, Russia
b Novosibirsk State University, pr. Lavrentieva, 15, 630090, Novosibirsk, Russia
c North-Eastern Federal University, ul. Kulakovskogo, 48, 677000, Yakutsk, Russia

Аннотация: The paper concerns an analysis of a crack propagation phenomena for an elastic body with thin inclusions and cracks. In the frame of free boundary approach, we investigate a dependence of the solutions on a rigidity parameter of the inclusion. A passage to the limit is justified as the parameter goes to infinity. Derivatives of the energy functionals are found with respect to the crack length for the models considered with different rigidity parameters. The Griffith criterion is used to describe a crack propagation. In so doing, an optimal control problem is investigated with a rigidity parameter being a control function. A cost functional coincides with a derivative of the energy functional with respect to the crack length. A solution existence is proved.

Ключевые слова: thin elastic inclusion, Timoshenko beam, semirigid inclusion, crack, delamination, nonpenetration boundary condition, optimal control.

УДК: 517.958, 539.3

MSC: 35Q74, 35Q93

Поступила 10 апреля 2017 г., опубликована 5 июля 2017 г.

Язык публикации: английский

DOI: 10.17377/semi.2017.14.050



Реферативные базы данных:


© МИАН, 2024