RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2017, том 14, страницы 620–628 (Mi semr810)

Математическая логика, алгебра и теория чисел

Some classical number sequences in control system design

A. V. Chekhonadskikh

Novosibirsk State Technical University, pr. K. Marx, 20, 630073, Novosibirsk, Russia

Аннотация: Algebraic tools of LTI control systems design need graphical and analytical structures which depend on dimension of their control parameter space. Essential elements for optimal low-order control systems are the least stable system poles, i.e. the rightmost on the complex plane characteristic roots. Their mutual location is described by critical root diagrams; the algebraic design procedure uses the root polynomials, i.e. factors of characteristic polynomials, which involve only the rightmost poles. From a theoretical point of view it is important to know the dependence between control space dimension and numbers of arising object sets and their asymptotics; they are represented by Fibonacci numbers and partial sums of Euler partitions. From a practical design point of view we need complete lists of required diagrams and polynomials; so we specify the recursive procedure to build a root polynomial list for each control parameter dimension.

Ключевые слова: LTI control systems, system pole, relative stability, Hurwitz function, critical root diagram, root polynomial, Fibonacci numbers, Euler partitions.

УДК: 511.623.3

MSC: 34E10,49N35

Поступила 20 февраля 2017 г., опубликована 11 июля 2017 г.

Язык публикации: английский

DOI: 10.17377/semi.2017.14.053



Реферативные базы данных:


© МИАН, 2024