RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2017, том 14, страницы 774–793 (Mi semr823)

Эта публикация цитируется в 1 статье

Дифференциальные уравнения, динамические системы и оптимальное управление

Existence of entropy measure-valued solutions for forward-backward $p$-parabolic equations

S. N. Antontsevabc, I. V. Kuznetsovba

a Lavrentyev Institute of Hydrodynamics, Siberian Division of the Russian Academy of Sciences, pr. Acad. Lavrentyeva 15, 630090, Novosibirsk, Russia
b Novosibirsk State University, Pirogova st., 2, 630090, Novosibirsk, Russia
c CMAF-CIO, University of Lisbon, 1749-016 Lisbon, Portugal

Аннотация: In this paper we have proved that the Dirichlet problem for the forward-backward $p$-parabolic equation has an entropy measure-valued solution which has been obtained as a singular limit of weak solutions and their gradients to the Dirichlet problem for the elliptic equation containing the anisotropic $(p,2)$-Laplace operator. In order to guarantee the existence of entropy measure-valued solutions, the initial and final conditions should be formulated in the form of integral inequalities. This means that an entropy measure-valued solution can deviate from both initial and final data on the boundary. Moreover, a gradient Young measure appears in the representation of an entropy measure-valued solution. The uniqueness of entropy measure-valued solutions is still an open question.

Ключевые слова: anisotropic Laplace operator, entropy measure-valued solution, forward-backward parabolic equation, gradient Young measure.

УДК: 517.95

MSC: 35K92

Поступила 28 мая 2017 г., опубликована 16 августа 2017 г.

Язык публикации: английский

DOI: 10.17377/semi.2017.14.066



Реферативные базы данных:


© МИАН, 2025