RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2017, том 14, страницы 927–936 (Mi semr835)

Вычислительная математика

Кубатурные формулы для функций двух переменных с большими градиентами в пограничных слоях

А. И. Задорин

Sobolev Institute of Mathematics, Acad. Koptyug avenue, 4, 630090, Novosibirsk, Russia

Аннотация: There are constructed and investigated the cubature formulas in the rectangular domain to compute the integral from a function of two variables with large gradients in boundary layers. It is assumed that the function have two components with large gradients which are known up to the multiplier. This components responsible for growth of function in boundary layers. Research is relevant, because the application of cubature formulas based on Lagrangian interpolation in the presence of large gradients leads to significant errors. Cubature formula with a given number of nodes in each direction is constructed. Formula is exact for selected components. It is proved that the error estimates of constructed formulas don't depend on large gradients of function in boundary layers.

Ключевые слова: two-variable function, boundary layer, double integral, nonpolynomial interpolation, cubature rule, error estimate.

УДК: 519.644.7

MSC: 65D32

Поступила 15 июня 2017 г., опубликована 15 сентября 2017 г.

DOI: 10.17377/semi.2017.14.078



Реферативные базы данных:


© МИАН, 2024